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Abstract
B A C K G R O U N D :  A l z h e i m e r ’ s  D i s e a s e  ( A D )  i s  a 
neurodegenerative brain disease in the elderly. Recent studies 
have revealed the heterogeneous nature of AD. Mild Cognitive 
Impairment (MCI) is the prodromal stage of AD. 
OBJECTIVES: In this study, we identified subtypes of MCI 
based on genetic polymorphism and gene expression. 
METHODS: We utilized the two types of omics data, namely 
genetic polymorphism and gene expression profiling, derived 
from 125 MCI patients’ peripheral blood samples from the 
ADNI-1 dataset. Similarity network fusion (SNF) algorithm 
was implemented to cluster MCI patient subtypes. And 
185 MCI patients in ADNI-2 were utilized to evaluate the 
effectiveness of this method. Two MCI subtypes were identified 
by implementing the SNF algorithm. 
RESULTS: We used Kaplan-Meier analysis and log-rank 
testing for the conversion from MCI to AD between two 
subtypes, and p-value is 4.58×10-3. In addition, we compared 
patients among two MCI subtypes by the following factors: 
the changes in Alzheimer’s Disease cognitive scales and MRI 
image; significantly enriched pathways based on differentially 
expressed genes. This study proved that MCI is a heterogeneous 
disease by concluding that AD development in two MCI 
subtypes is significantly different. 
CONCLUSIONS: MCI patients with different molecular 
characteristics have different risks converting to AD. In addition 
to evaluating statistics, genetic polymorphism and gene 
expression profiling from MCI patients’ peripheral blood are 
non-invasiveness and cost-effectiveness markers to identify MCI 
subtypes for clinical application.

Key words: Alzheimer’s disease, mild cognitive impairment, molecular 
subtyping, similarity network fusion.

Introduction

Alzheimer ’s  disease (AD) is  a  chronic 
degenerative brain disease and the most 
common cause of dementia in the elderly. 

According to statistics, about 10% of people older than 65 
suffer from AD (1). Due to the lack of understanding of 

its causes, effective drugs or treatments of AD is yet not 
invented. 

AD is a complex and heterogeneous disease caused 
by multiple different genetic factors (2). Recently, more 
and more studies, such as clinicopathologic (3), atrophy 
patterns on magnetic resonance imaging (MRI) (4) and 
amyloid-β fibril polymorphism on solid-state nuclear 
magnetic resonance (ssNMR) (5), have supported the 
hypothesis on the existence of distinctive AD molecular 
subtypes. For example, the rapidly progressive form 
in which neurodegeneration occurs within months 
and a typical prolonged-duration form are two AD 
clinical subtypes that been well recognized. Recently, 
some researchers have found that different AD clinical 
subtypes were correlated with fibril formations subtypes 
by researching on 37 brain samples from 18 deceased 
Alzheimer ’s patients obtained by using ssNMR (5). 
Lately, another research assigned 4,050 people with late-
onset AD into six subgroups according to their cognitive 
functioning at the time of diagnosis and then utilized 
genetic data to find the biological differences across 
these subgroups (6). This study supported the biological 
coherence of cognitively defined subgroups. With more 
in-depth studies of Alzheimer’s subtypes, new diagnostic 
criteria, and treatment of AD that target specific kinds of 
AD subtypes can be expected. 

Mild Cognitive Impairment (MCI) is known as the 
prodromal stage of AD. MCI is a neurological disorder 
in which an elderly has mild but measurable changes 
in cognition. It is worth mentioning that not all people 
with MCI will develop AD. Studies suggest that MCI 
patients progress to AD at a rate of approximately 10% 
every year (7). Early identification of high-risk subtypes 
MCI patients appears to be significant and may enable a 
more effective, preventive treatment, thereby increasing 
the possibility of delaying even avoiding conversion from 
MCI to AD. 

For the above reasons, we believe that MCI is a 
heterogeneous disease. Identifying the subtypes of MCI is 
critical for implementing precision medicine approaches 

© Serdi and Springer Nature Switzerland AG 2020



MCI SUBTYPE BASED ON OMICS DATA

2

and for ultimately developing successful subtype-
specific drugs for AD. And classifying MCI patients 
into meaningful subtypes may provide better targeted 
treatment to delaying or preventing the conversion from 
MCI to AD. Genetic factors play an important role in MCI 
and AD (2). However, to our knowledge, the molecular 
subtyping of MCI based on integrative multi-omic data 
was not taken into consideration among current studies. 
Therefore, in this study, we took advantage of the two 
types of omics data, including genetic polymorphism 
and gene expression, derived from 125 MCI patients’ 
peripheral blood samples from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) to identify the MCI 
patient subtypes (8). We used the Similarity Network 
Fusion (SNF) algorithm to cluster the two types of omics 
data to determine the subtypes of 125 MCI patients (9). 
For testing the effectiveness and reliability of the SNF 
algorithm, 185 MCI patients from ADNI-2 were identified 
the subtype by the label propagation algorithm (9, 10). 
The flow chart of our research is illustrated in Figure 1. To 
prove the biological and clinical significance of subtyping 
patients based on our method, these different subtypes 
were compared by the following factors: the time 
difference of the conversion from MCI to AD; cognitive 
scales and MRI image; significantly enriched pathways 
based on differentially expressed genes separately.

Methods

Genomic data and imaging data

Data used in this study were downloaded from 
ADNI. ADNI was a multi-site study proposed by the 
National Institute on Aging (NIA), the National Institute 
of Biomedical Imaging and Bioengineering (NIBIB) 
and the Food and Drug Administration (FDA) in 2003. 
This organization is holding an ongoing, longitudinal, 
multicenter study. Its primary goal is to test whether 
clinical, imaging, genetic, and biochemical biomarkers are 
effective in clinical trials of MCI and AD. The first stage 
of ADNI, as known as ADNI-1, was completed in 2010 
(8). More up-to-date and detail information is available at 
http://adni.loni.usc.edu/.

In this article, we used combinations of multi-omics 
data (genetic polymorphism and gene expression) from 
the ADNI-1 and ADNI-GO/2 study to identify the MCI 
molecular subtypes and to predict the conversion from 
MCI to AD. 125 MCI patients’ SNP and gene expression 
data were downloaded from ADNI-1 for identification 
MCI subtypes. Meanwhile, 185 MCI patients were 
downloaded from ADNI-GO/2 as an independent 
verification dataset for predicting the subtype of any 
new patients. The information on MCI patients 

Figure 1. Flow chart of our research. (a) The Similarity Network Fusion (SNF) algorithm is used to integrate SNP and 
gene expression data for subtype identification of MCI patients; (b) The label propagation algorithm is applied to predict 
the subtype of any new patient from ADNI-GO/2 for testing the effectiveness and reliability of the SNF algorithm
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is listed in Supplementary Excel file 1. Both profiling 
were collected from peripheral blood samples. ADNI-
1 and ADNI-GO/2 subjects were genotyped using the 
Human 610-Quad BeadChip and Illumina Human Omni 
Express BeadChip, respectively. Only SNP markers were 
analyzed for subsequent analysis. Quality control steps 
were performed on genetic polymorphism using the 
software package named PLINK (11), release v1.90b.5. 
SNPs with missing rate >0.05, minor allele frequency 
< 0.05, and Hardy–Weinberg equilibrium P < 10−3 were 
excluded from the genetic polymorphism set. Then the 
SNP data was applied by using the IMPUTE2 program 
for imputing the missing data with NCBI 1000 Genomes 
build 37 (UCSC hg19) as the reference panel (12). The 
Affymetrix Human Genome U219 Array was carried out 
for expression profiling, which contains 530,467 probes. 
Thenceforth, we used an R package named RMA for the 
normalization of gene expression microarray data (13). 
Finally, 49,293 transcripts were kept in this study.

There are various clinical/cognitive assessment 
scores from ADNI that are useful to compare clinical 
information between two subtypes of patients, including 
Mini Mental State Examination (MMSE), Clinical 
Dementia Rating Sum of Boxes (CDR-SB) and Activities 
of Daily Living Score (from the Functional Activities 
Questionnaire, FAQ). In addition, we downloaded T1 
weighted MRI images in NIFTI format from 125 MCI 
patients’ baseline, 24-month follow-up data set in ADNI, 
and structural MRI scan applied inversion recovery-fast 
spoiled gradient recalled (IR-SPGR) for researching two 
clusters of MCI patients’ differences in areas of brain 
atrophy. VBM analyses were performed using the SPM12 
toolkit (Statistical Parametric Mapping software, http://
www.fil.ion.ucl.ac.uk/spm/sofware/ spm12) running 
under MATLAB 2013a (14).

MCI subtype identification based on similarity 
network fusion

We applied the similarity network fusion (SNF) 
algorithm to cluster the MCI patient subtypes (9). SNF 
is an integrated characterization of genomic profiling at 
multiple levels for subtype identification. The advantage 
of using SNF is that it is based on complementarity in 
multiple genomic data types. First, the SNF algorism uses 
a similarity measure to constructs a patient-by-patient 
similarity network for each genomic data type. The nodes 
of the network for each data type represent patients and 
the weighted edges are equivalent to pairwise sample 
similarities. Next, the network fusion step updates every 
network using a nonlinear method named message-
passing theory. Each iteration makes these networks more 
similar to each other. After many iterations, multiple 
networks converge to a fusion network. Finally, the 
fusion network is clustered into several subtypes based 
on spectral clustering methods. The illustrative example 
of SNF steps are shown in Figure S1. Some patients 

(002_S_0729, 010_S_0161 and 011_S_1282 from cluster-1; 
while 005_S_0546, 027_S_1045 and 037_S_0150 from 
cluster-2) were used as examples to explain the clustering 
process of the SNF method (Figure S1 (d)).

More formally speaking, given n MCI patients and 
M omics (SNP and expression data in this study), the 
sample×sample similarity graph G=(N, W) is constructed, 
where node set N represents the samples x1,x2,...,xn and 
the edges weight W(i, j) represents the weight between xi 
and xj. W is defined by:

where d(m) (xi,xj) is the Euclidean distance between 
sample xi,xj for the m-th omic. α is a hyperparameter and 
α=0.8 in this study. ε is expressed as below:

where Ki is the number of neighbours of xi and Ki=30 in 
this study, mean (ε(xi, Ki)) is the average distance between 
xi and each of its neighbors. ε is introduced to eliminate 
the scaling problem.

A transition probability matrix is constructed between 
all MCI patients initially by:

Meanwhile, a transition probability matrix between 
nearest neighbors is defined by: 

where Ni represent a set of i’s k nearest neighbors in 
matrices with measurements from the m-th omic.

Then, the matrix P is updated based on message-
passing theory iteratively between the k nearest 
neighbors by formula:

where Pq
(m) is the matrix for omic m at iteration q. The 

iterative process means that the connection information 
of different networks is exchanged to achieve the final 
uniform network.

After completing the network fusion, low-weight 
edges in each network disappear, and high-weight 
edges are retained. SNF reduces the noise among these 
steps, which makes this method robust to noise and the 
data heterogeneity. Finally, based on spectral clustering 
methods, namely minimize RatioCut, the fusion network 
is clustered into several subgroups. Such subgroups are 
considered as our resulting subtypes. The details of SNF 
reference (9). 
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Any new MCI patient’ subtype prediction based 
on label propagation

We adopted label propagation algorithm which is 
a simple iterative semi-supervised learning algorithm 
based on network structure to identify the subtype of the 
new MCI patient (9, 10). Assume n patients have been 
determined into y subtypes by the SNF method with a 
fused network F. To predict the subtype of a new patient, 
a similarity matrix F=[F s;s’ 1] is constructed, where s 
is the similarities vector calculated by SNF. Define a 
(n+1)×(n+1) probabilistic transition matrix T:

where Tij is the probability of jumping from node j to i. 
Also we define a (n+1)×y label matrix Y, whose i-th row 
representing the label probabilities of node yi. We iterate 
the propagation process as follows:

Repeat the following steps:

This process will converge usually in 1000 iterations. 
And we can predict the subtype of the new patient given 
by converged Y.

 
Results

Clustering of MCI patients

We downloaded 138 MCI patients’ gene expression 
profiling and 361 MCI patients’ genetic polymorphism 
data from the ADNI-1 dataset. The number of MCI 
patients with both genetic polymorphism and gene 
expression was 125. Hence, we used these MCI patients 
in this article for integrating the two types of omics data 
to identify MCI patient subtypes. Moreover, 276 MCI 
patients’ SNP data and 302 gene expression profiling 
were downloaded from the ADNI-GO/2 dataset. 185 MCI 
patients who have SNP data, gene expression data, and 
clinical follow-up data for greater than 36 months were 
selected as an independent verification set to evaluate 
the effectiveness of this method. Table S1 shows the 
characteristics of the MCI patients included in this study.

The subtypes of MCI patients in the ADNI-1 dataset 
were identification based on SNF method (9). In the 
beginning, quality control steps were performed on 
genetic polymorphism using the software package 
named PLINK (11) and gene expression profiling using 
an R package named RMA (13) as described in method. 
Then, we utilized SNF to cluster MCI patients using 
both SNP and gene expression profiling after quality 
control. SNFtool R package (v2.3.0) was applied with 

the parameters K = 30, alpha = 0.8, T = 20 (9). Spectral 
clustering implemented in the SNFtool package was run 
on the SNF fused similarity matrix to obtain the groups 
that each corresponding to k=2 to 5.

After executing the SNF algorithm, we chose the best 
number of clusters according to two main approaches of 
the spectral clustering method. One is the connectivity of 
the network, and the other is to make use of the structure 
of eigenvectors of the Laplacian L (9). However, the 
optimal number of clusters based on the connectivity of 
the network is 2, the best number decided by the other 
approaches is 3. Therefore, we used the highest average 
silhouette score as an assistance approach to decide 
the optimal number of clusters. The silhouette score 
represents the coherence of clusters to evaluate whether 
patients are more similar within subtypes. In other words, 
the silhouette score condenses the cluster quality for each 
patient’s omics data into a single score that ranges from 
1.0 to -1.0. Hence, we had identified two subtypes. The 
number of patients in cluster-1 is 61, and cluster-2 has 64 
patients.

To prove the biological and clinical significance of 
subtyping patients based on the SNF method, we applied 
the label propagation algorithm to assign new patients 
to subtypes in the ADNI-2 datasets (9, 10). Genotype 
data of MCI patients from the ADNI-GO/2 dataset 
were downloaded, quality controlled, imputed to the 
Illumina 610Quad platform and combined. Genotype 
imputation was conducted to estimate unobserved 
genotypes. Impute2 software was used with NCBI 1000 
Genomes build 37 (UCSC hg19) as the reference panel 
(12). After executing the label propagation algorithm 
to 185 patients in ADNI-GO/2, 60 MCI patients were 
identified in cluster-1, while 125 patients were identified 
in cluster-2. The detail information on the subtypes of 
MCI patients in the ADNI-1 and ADNI-GO/2 dataset is 
listed in Supplementary Excel file 1.

Two MCI subtypes supported by clinical 
manifestations

We first examined the time difference of the conversion 
from MCI to AD between two subtypes of patients. 
Because the exact date of conversion to AD was not 
known, we used the midpoint between the last follow-up 
without an AD diagnosis and the first follow-up with an 
AD diagnosis for analyses. Subjects who did not convert 
were censored at the time of their last interview. We 
performed a Kaplan-Meier analysis on MCI of these two 
clusters. As is shown in Figure 2(a), P-value is 4.58×10-3, 
demonstrating a significantly different amount of time 
is consumed for MCI-to-AD conversion between two 
clusters. Patients that develop the disease more rapidly 
(red solid line) were cluster-1 MCI patients, and the 
others (blue dashed line) were cluster-2 MCI patients.

We also considered the changes in Alzheimer’s Disease 
cognitive scales. Cognitive function status was measured 
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by the Mini-Mental State Examination (MMSE) (rating 
0–30, higher scores indicate good cognitive function), the 
Clinical Dementia Rating Sum of Boxes (CDR-SB) (rating 
0–25, with higher scores representing greater impairmen) 
and the Functional Assessment Questionnaire  (FAQ) 
(range 0–30, with higher scores representing greater 
impairment) in two years for two MCI subtypes of 
patients (8). As is shown in Figure 3(a), cognitive decline 
in cluster-1 MCI patients tends to be more remarkable 
than that of cluster-2 over 24 months.

To test the effectiveness and reliability of the SNF 
algorithm through its application on ADNI-GO/2 
patients, we examined the time difference of the 
conversion from MCI to AD between two subtypes of all 
MCI patients. As is shown in Figure 2(b), this gives a log-
rank P-value of 2.26×10-4. And three AD cognitive scales 
were also displayed in two years for two MCI subtypes of 
patients in the ADNI-2 dataset, which is shown in Figure 
3(b). The scores change trends of all three cognitive scales 
in ADNI-GO/2 are similar to the ADNI-1 dataset. Thus, 
it proved the validity of the SNF method for subtyping 
MCI patients based on integrative genetic polymorphism 
and gene expression. Meanwhile, the cluster-1 subtypes 
having the worse prognosis than the cluster-2 subtypes.

Two MCI subtypes supported by MRI image
We further analyzed the MRI images to illustrate 

the difference between two clusters of MCI patients’ 
ADNI baseline and 24-month follow-up MRI dataset 
using voxel-based morphometry (VBM) analyses in 
atrophy areas (15). VBM analysis has been developed 
for characterizing differences in the local composition of 
brain tissue using MRI and is not restricted to previously 
called region-of-interest measurements.

Firstly, we normalized images with the voxel sizes 
of 1.5×1.5×1.5mm3 because it could preserve the total 
amount of signal in the images. After normalization, 

T1-weighted images were segmented into white matter 
(WM), gray matter (GM), and cerebrospinal fluid (CSF) 
using default option parameters on SPM12’s unified 
segmentation procedure. After that, we transformed 
patients’ images to the Montreal Neurological Institute 
(MNI) co-ordinate space using a template. Cognitive 
impairment is related to the MRI of GM decline 
on longitudinal analysis. Hence, on GM images, the 
spatial normalization approach was performed with 
the diffeomorphic anatomical registration using the 
exponentiated Lie algebra (DARTEL) algorithm (16). 
Subsequently, the images were smoothed with a 
10-mm full-width at half-maximum isotropic Gaussian 
smoothing kernel. The results of GM images were 
analyzed with the two-sample t-test. For voxels in GM 
probability maps between baseline and 24 months, we 
selected those voxels with P<0.05 corrected by False 
Discovery Rate (FDR), and only regions of more than 
100 contiguous selected voxels were considered in the 
analysis. To analysis the result of GM atrophy origins, 
we utilized the predefined anatomical masks obtained 
from an extension to the SPM package – XjView toolbox 
(http://www.alivelearn.net/xjview/) and the automated 
anatomical labeling (AAL, http://www.gin.cnrs.fr/en/
tools/aal-aal2/) (17).

Based on the current official anatomical nomenclature 
proposed by Guilherme et al., the brain structure 
was divided into six lobes: frontal, parietal, occipital, 
temporal, insular, and limbic (18). The atrophic number 
of significantly different voxel regions is shown in Table 
1. The result of the above steps was characterized by 
XjView.The comparison of cluster-1 (a) and cluster-2 (b) 
MCI patients’ regions of gray matter atrophy between 
baseline and 24-month follow-up MRI images are shown 
in Figure 4(a,b).

Figure 4(c) reveals that the atrophic size of significantly 

Figure 2. The Kaplan-Meier plot analysis on MCI of the two clusters of clinical data. X axis represents time past after 
MCI patients participating the study, while Y axis represents estimated percentages of stable MCI patients. The red 
solid line represents cluster-1 MCI patients in ADNI-1 (a) and ADNI-GO/2 (b), while the blue dashed line represents 
cluster-2 MCI patients in ADNI-1 (a) and ADNI-GO/2 (b)
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different voxel bunches of cluster-1 MCI patients in 24 
months are apparently larger than that of cluster-2 MCI 
patients. In addition, the proportion of the atrophic voxels 
in six lobes accounted for 46.26% of total number of 

brain atrophic voxels in cluster-1, while in cluster-2 this 
ratio is 25.00%. This result indicates that not only was 
the atrophy of voxels in cluster-1 patients significantly 
more than that of cluster-2 patients, but also the location 

Figure 3. Changes in AD cognitive scales (MMSE, CDR, FAQ) in two years for two MCI subtypes in ADNI-1 (a) and ADNI-
GO/2 (b). X axis represents time past after MCI patients participating the study, while Y axis represents Alzheimer’s 
Disease cognitive scales score. Cognitive decline in cluster-1 MCI patients (red) is tend to be more remarkable than that 
of cluster-2 (blue) over 24 months

Figure 4. . Display of voxels with significantly brain areas of decreased gray matter intensity in each cluster. Images 
are 3D render view of (a) cluster-1 and (b) cluster-2 in sagittal, coronal and transversal. And paired images are MCI 
patients’ baseline MRI images compared to those of 24-month follow-up using VBM analyses. Colored voxels show 
regions that were significant in the analyses with p<0.05 corrected by FDR, and regions threshold of 100 contiguous 
voxels. The color brighter (yellow) indicates the more significant area of brain atrophic voxels in 24 month. (c) The 
atrophic size of significantly different voxel bunches within six lobes in 24 months
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of atrophy was also concentrated in the functional areas 
of the brain. Therefore, by comparing the MRI images of 
cluster-1 and cluster-2 MCI patients collected from two-
year data, one can see that AD development of cluster-1 
patient is faster than that of cluster-2. Hence, this proves 
the usefulness of the subtype classification in clinical.

Two MCI subtypes supported by gene 
annotation

Subsequently, differential expressions of mRNA of MCI 
cluster-1, cluster-2 compared with the cognitively normal 
samples were each computed using R package named 
limma (19). Adjust-P value< 0.05 served as the screening 
conditions for the significant differences. The significantly 
different expression gene-set of cluster-1 had 3156 genes, 
while that of cluster-2 had 178 genes. We applied the 
functional annotation tool of “Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment” and “Gene 
ontology (GO)” in Enrichr, which was an integrative 
web-based software application that included many new 
gene-set libraries for gene and sequence annotations 
(20). Enrichr provided an adjustment P-value and 
combined score to annotate the biological significance 
of differentially expressed genes. An adjust p-value, 0.1, 
was chosen as significant thresholds upon filtering the 
pathway data. Because of too many biological processes 
in GO, a threshold of the combined score was considered. 

Common GO analyses were performed with a cut-off of 
combined score 20 and adjust p-value 0.1. The definition 
of the combined score in EnrichR is to integrate both 
p-value and z-score with the formula c = z-score•log(p-
value), where c is the combined score, represented by 
p-value computed using the Fisher exact test, and z-score 
computed by assessing the deviation from the expected 
rank. The significant pathways and biological processes 
of differentially expressed genes between cluster-1, 
cluster-2, and control are shown in Figure 5. The full 
list of KEGG pathways and GO enrichment analysis 
information is in Supplementary Excel file 2.

The most remarkable pathways of cluster-1 are 
the following: RNA degradation, Amino sugar and 
nucleotide sugar metabolism, and RNA transport. 
These pathways are related to a wild range of biological 
processes. Meanwhile, the significant pathways of 
cluster-1 were predominated by immune system-related 
biological fields, such as B cell receptor signaling, TNF 
signaling and some microbial infection pathway (Epstein-
Barr virus infection, Shigellosis and Legionellosis). More 
research results showed that inflammation is closely 
related to AD. In the brain, immune system cells called 
microglia is activated by the presence of toxic amyloid-β 
and tau proteins (21). Microglia tries to get rid of the 
remnants of inflammasomes in tiny clumps. However, 
these remnants continued to spread new amyloid-β 
clusters as well as aggravating the state of AD. Notably, 
Epstein-Barr virus infection is also one of the significant 

Figure 5. The enriched significant KEGG pathways and GO biological processes bubble plot of differentially expressed 
genes (DEG) with FDR<0.05. (a) cluster-1 DEG KEGG enrichment, (b) cluster-2 DEG KEGG enrichment, (c) cluster-1 
DEG GO enrichment, (d) cluster-2 DEG GO enrichment. The size of the dots represents the count of DEG in the 
corresponding pathways or GO terms. Y axis represents the enrichment pathways and biological processes. (a, b) X 
axis represents the opposite of the logarithm of p-value for each pathway, and (c, d) X axis represents the combine score 
which is defined by Enrichr for each biological process 
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pathways. Epstein-Barr virus is known to be the one of 
herpes viruses. Recent research indicated that herpes 
viruses abundance was significantly associated with 
modulators of APP metabolism which revealed viral 
regulation of AD risk by multiscale networks (22). And 
insulin signaling pathways have a close relationship with 
AD. AD has been considered as a metabolic dysfunction 
disease associated with impaired insulin signaling (23). 
Proteolytic processes contribute to the amyloid cascade, 
and proteolysis of tau may be critical to neurofibrillary 
degeneration, which correlates with AD (24).

The significant biological processes in GO enrichment 
of cluster-1 are the regulation of transcription and 
protein catabolic process. These biological processes are 
closely correlated. Regulation of the transcription, DNA-
templated is any process that modulates the frequency, 
rate or extent of cellular DNA-templated transcription. 
Regulation of transcription of AD genes might be an 
important player in the neurodegenerative process. For 
example, the APP gene is ubiquitously expressed in a 
variety of tissues, with the highest expression shown in 
neuronal cells. The abnormally expressed APP will lead 
to an increased amount and deposition of the amyloid β 
peptide (Aβ) in the brain triggering AD-related neuronal 
degeneration (25). Mutant forms of ubiquitin may inhibit 
proteolysis within neurons, making these cells susceptible 
to inclusion formation. Therefore, some researchers 
hold the contention that neurodegenerative diseases 
collectively referred to as “ubiquitin protein catabolic 
disorders”. Especially, similar to the KEGG analysis of 
cluster-1 MCI patients, the significant biological processes 
are also associated with the immune system. For instance, 
some biological processes are related to neutrophil and 
macroautophagy (26). Neutrophils are key components 
for early innate immunity. Blood samples from AD 
patients with dementia revealed that the neutrophil 
hyperactivation was associated with increased reactive 
oxygen species production as well as the levels of 
intravascular neutrophil extravascular traps. Moreover, 
neutrophil phenotype may have a close relationship with 
the rate of cognitive decline (26).

The cluster-2 significantly enriched pathways mainly 
consisted of neuronal signaling-related pathways, such 
as endocytosis and synaptic vesicle cycle. For instance, 
the synaptic vesicle cycle plays an important role in 
the biological process of exocytosis and endocytosis. 
It facilitates a series of events achieving chemical 
neurotransmission between functionally related neurons. 
Some study results demonstrated that considerable 
changes in the expression and functions of presynaptic 
proteins attributed in parts to direct effects of amyloid-β 
production and toxicity on the synaptic vesicle cycle 
(27). In addition, endocytosis is critical for the normal 
processing of APP, which is central to AD pathogenesis 
(28).

The most remarkable GO biological process of cluster-2 
is the regulation of vascular associated smooth muscle 

cell migration. The degenerated smooth muscle cells 
express increased amounts of amyloid β-precursor 
protein deposition in the medial layer of the cerebral 
vessel wall and produce Aβ peptide (29). And the low-
density lipoprotein particle receptor catabolic process 
is another important biological process in cluster-2. 
This biological process results in the breakdown of a 
low-density lipoprotein particle receptor molecule, a 
macromolecule that undergoes combination with a 
neurotransmitter to initiate a change in cell function. 
The disorder in this biological process could impair the 
neurotransmitter-triggered signal transduction appearing 
in AD.

 
Discussion

AD is a neurodegenerative brain disease that 
yet  has no available effective medications or 
supplemental treatment. Studies have shown that AD 
is a heterogeneous disease. In this article, we integrated 
two types of omics data (genetic polymorphism and 
gene expression profiling) of MCI patients to identify 
subtypes with biological and clinical significance by 
the SNF method. We performed SNF, the integrative 
clustering of multiple genomic data algorithms, to cluster 
MCI patients. Experimental studies were conducted on 
subtypes of MCI patients, and we showed that multi-
omics data define subtypes characterized by biological 
and clinical significance.

We utilized the SNF method to identify MCI patient 
subtypes based on multi-omics characteristics (9). SNF 
has been used to cluster subtype of specific cancer 
patients, and satisfactory results have been achieved. 
After executing the SNF algorithm, we identified two 
MCI subtypes. By comparing clinical information 
between two subtypes of patients, we considered the 
changes in two years on AD cognitive scales (MMSE, 
CDR, and FAQ) and MRI images in atrophy areas based 
on VBM. We found that the molecular subtypes of 
MCI are remarkably different in clinical information. 
It is necessary to lay the foundation for the precision 
treatment of MCI patients.

To study the difference in the disease mechanism 
of cluster-1 and cluster-2, differential expressions 
of MCI cluster-1, cluster-2 mRNA compared with 
the cognitively normal samples were computed 
correspondingly. And the differential expression genes 
in cluster-1 are significantly more than that of cluster-2. 
We conjecture that the risk factors of AD in cluster-1 
are more complicated. Subsequently, we applied the 
functional annotation tool of KEGG and GO in Enrichr 
for enrichment analysis based on these genes. In cluster-1 
MCI patients, there are some microorganisms (such as 
gram-negative bacterium and herpes viruses (22)) that 
can escape immune responses. These microorganisms 
activated immune responses, such as microglia, to clear 
the toxic proteins and widespread remnants from dying 



JPAD  - Volume

9

cells. Furthermore, these remnants continue to spread 
new amyloid-β clusters causing inflammatory storms 
(21). Above is the reason that MCI in cluster-2 patients 
may have synaptic failure and degeneration conditions. 
For example, the reduction in synaptic vesicle proteins 
has been shown to have a strong association with the 
clinical symptoms of dementia (27). We speculated that 
it is the storm caused by inflammasomes in the brain 
that result in cluster-1 MCI patients to develop the 
disease more rapidly than cluster-2 patients. Also, the 
perturbations of many other pathways have associated 
with the cause of AD. For example, Moriguchi et al. 
proposed that AD may be brain diabetes, and insulin 
signaling pathway is an important pathway for causing 
AD (23). And perturbation of pathways such as protein 
processing in endoplasmic reticulum, inositol phosphate 
metabolism and fubiquitin mediated proteolysis 
pathways will contribute to the amyloid cascade, which 
closely related to senile plaques and thus causing AD 
(24). The cluster-2 significantly enriched pathways mainly 
consisted of neuronal signaling-related pathways, and 
some scholars considered AD as a synaptic dysfunction 
caused by diffusible oligomeric assemblies of the 
amyloid-β protein (27). Both cluster-1 and cluster-2 
enriched KEGG pathways of significantly differentially 
expressed genes have the endocytosis pathway. Hence, 
we speculated that endocytosis is the basic molecular 
mechanism of AD.

SNP data and mRNA expression profiling collected 
from patients’ peripheral blood have the characteristics 
of non-invasiveness and cost-effectiveness markers to 
identify MCI subtypes for clinical application. Clinical 
decisions will most likely be dictated by the genetic 
characteristics of AD patients in the coming years. We 
believe our method can effectively identify the subtypes 
of MCI patients, and can be applied in clinical in the 
future. Tailoring our method based on individual 
genetic characteristics will help doctors and researchers 
develop better therapeutic strategies and save many of 
MCI patients from receiving unnecessary toxic therapy. 
Further study should take into account the factors that 
can influence gene expression. For example, some other 
pathologies, influencing the expression of certain genes, 
may be present in elderly MCI patients. It may have an 
impact on the subtyping of MCI patients.

Two experiments can illustrate the clinical relevance 
of our method. For the first experiment, the expression 
data of 44 AD patients at baseline from the ADNI 
dataset were downloaded. We performed a hierarchical 
clustering analysis of patients with AD and patients 
of the two subtypes of MCI based on expression data 
using a similarity measure in SNF. The results are shown 
in the following Figure S2. This figure clearly shows 
that most AD patients are clustered with MCI cluster-1 
patients. For the other experiment, 27 patients with AD 
at baseline in the ADNI dataset were downloaded. We 
applied the label propagation algorithm to assign new 

patients to subtypes. The subtype labels of these MCI 
patients were listed in Table S2. To test the effectiveness 
and reliability of our method, three AD cognitive scales 
were also displayed in 24-month for two subtypes of AD 
patients. As is shown in Figure S3, cognitive decline in 
cluster-1 MCI patients tends to be more remarkable than 
that of cluster-2 over 24 months, which is similar to the 
MCI patients in the ADNI dataset. 

Hence, we believe our method can effectively identify 
the subtypes of MCI patients, and can be applied in 
clinical in the future. We look forward to potential 
collaborations with doctors and experimental biologists. 
We hope that the subtyping of MCI patients predicted 
with our model, will demonstrate its medical and 
therapeutic meaning. Besides, different types of data 
share complementary information, which is robust to 
noise and data heterogeneity (9). In the future, other types 
of biological data, such as DNA methylation and miRNA 
expression, can be integrated to explore biological 
patterns related to identify MCI subtypes. And classifying 
MCI patients into meaningful subtypes may improve 
the forecasting performance to proposing a method for 
predicting the conversion from MCI to AD (30).
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